Photoacoustic ultrasound spectroscopy for assessing red blood cell aggregation and oxygenation.
نویسندگان
چکیده
Red blood cell (RBC) aggregation and oxygenation are important markers for a variety of blood disorders. No current technique is capable of simultaneously measuring aggregation/oxygenation levels noninvasively. We propose using photoacoustic ultrasound spectroscopy (PAUS) for assessing both phenomena. This technique relies on frequency-domain analysis of the PA signals by extracting parameters such as the ultrasound spectral slope and the midband fit. To investigate the effect of hematocrit, aggregation, and oxygenation levels on PAUS parameters, a Monte Carlo-based theoretical model and an experimental protocol using porcine RBCs were developed. The samples were illuminated at 750 and 1064 nm and changes in the PAUS parameters were compared to the oxygen-dependent optical absorption coefficients to assess the oxygenation level. Good agreement between the theoretical and experimental spectral parameters was obtained for the spectral slope of the nonaggregated spectra (≈ 0.3 dB/MHz). The experimental midband fit increased by ≈ 5 dB for the largest aggregate size. Based on the analysis of the PA signals, the oxygen saturation level of the most aggregated sample was >20% greater than the nonaggregated sample. The results provide a framework for using PA signals' spectroscopic parameters for monitoring the aggregation and oxygenation levels of RBCs.
منابع مشابه
Simultaneous assessment of red blood cell aggregation and oxygen saturation under pulsatile flow using high-frequency photoacoustics.
We investigate the feasibility of photoacoustic (PA) imaging for assessing the correlation between red blood cell (RBC) aggregation and the oxygen saturation (sO2) in a simulated pulsatile blood flow system. For the 750 and 850 nm illuminations, the PA amplitude (PAA) increased and decreased as the mean blood flow velocity decreased and increased, respectively, at all beat rates (60, 120 and 18...
متن کاملQuantitative photoacoustic assessment of red blood cell aggregation under pulsatile blood flow: experimental and theoretical approaches
In the present paper, the optical wavelength dependence on the photoacoustic (PA) assessment of the pulsatile blood flow was investigated by means of the experimental and theoretical approaches analyzing PA radiofrequency spectral parameters such as the spectral slope (SS) and mid-band fit (MBF). For the experimental approach, the pulsatile flow of human whole blood at 60 bpm was imaged using t...
متن کاملHigh-frequency photoacoustic imaging of erythrocyte aggregation and oxygen saturation: probing hemodynamic relations under pulsatile blood flow
In this paper, we investigate the feasibility of high-frequency photoacoustic (PA) imaging to study the shear rate dependent relationship between red blood cell (RBC) aggregation and oxygen saturation (SO2) in a simulated blood flow system. The PA signal amplitude increased during the formation of aggregates and cyclically varied at intervals corresponding to the beat rate (30, 60, 120, 180 and...
متن کامل2D backward-mode photoacoustic imaging system for NIR (650-1200nm) spectroscopic biomedical applications
A 2D photoacoustic imaging system for spectroscopic biomedical applications is reported, based on a Fabry-Perot (FP) polymer film ultrasound sensor. A variety of broadband sensors have been developed with bandwidths from 20MHz to 50MHz. These ultrasound sensors have a unique dichroic design which has an optical transmission window from 650nm to 1200nm and can be interrogated in the 1520-1610nm ...
متن کاملAcoustic resolution photoacoustic Doppler flowmetry: practical considerations for obtaining accurate measurements of blood flow
An assessment has been made of various experimental factors affecting the accuracy of flow velocities measured using a pulsed time correlation photoacoustic Doppler technique. In this method, Doppler time shifts are quantified via crosscorrelation of pairs of photoacoustic waveforms generated in moving absorbers using pairs of laser light pulses, and the photoacoustic waves are detected using a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical optics
دوره 17 12 شماره
صفحات -
تاریخ انتشار 2012